Course Schedule of MST Program ,TIGP

Semester: Fall, 2011(100 學年度上學期)

Course(科目): Modern Experimental Techniques 現代實驗技術

Time(時間): F6F7F8 Friday (14:20~17:10)

Room(教室): R311 IAMS 中研院原分所 R311(台大校園)

A507 Institute of Chemistry in Academia Sinica(only for Prof. Tzou)

NTHU coordinator(清大教師): 倪其焜

Course speakers(授課老師): Jim Lin 林志民、Ker-Jar Song 宋克嘉教授、

Juen-Kai Wang 王俊凱、Jyhpyng Wang 汪治平教授、Ta-Chau Chang 張大釗老師、Yu-Ju Chen 陳玉如老師、Der-Lii Tzou 鄒德里老師

Required(必修課), credit(學分): 3 Course No.(科號): TIGP722100

Date	lecturer	Date	lecturer
9/16 Friday 14:20~17:10	Prof. Juen-Kai Wang	11/18 Friday 14:20~17:10	Prof. Ker-Jar Song
9/23 Friday 14:20~17:10	Prof. Juen-Kai Wang	11/25 Friday 14:20~17:10	Prof. Ker-Jar Song
9/30 Friday 14:20~17:10	Prof. Juen-Kai Wang	12/2 Friday 14:20~17:10	Prof. Jyhpyng Wang
10/7 Friday 14:20~17:10	Prof. Juen-Kai Wang	12/9 Friday 14:20~17:10	Prof. Jyhpyng Wang
10/14 Friday 14:20~17:10	Prof. Jyhpyng Wang	12/16 Friday 14:20~17:10	Prof. Ta-Chau Chang
10/21 Friday 14:20~17:10	Prof. Jyhpyng Wang	12/23 Friday 14:20~17:10	Prof. Ta-Chau Chang
10/28 Friday 14:20~17:00	Prof. Jyhpyng Wang	12/30 Friday 14:20~17:10	Prof. Yu-Ju Chen
11/4 Friday 14:20~17:10	Prof. Jim Lin	1/6/2012 Friday 14:20~17:10	Prof. Der-Lii Tzou
11/11 Friday14:20~17:10	Prof. Jim Lin		

The course of Modern Experimental Techniques is composed of four component mini-courses: (1) Vacuum Technology taught by Profs. Ker-Jar Song and Jim Jr-Min Lin, (2) Optics, Lasers, and Optical Signal Detection taught by Prof. Juen-Kai Wang, (3) Laboratory Electronics taught by Prof. Jyhpyng Wang, and (4) Charged-Particle Optics taught by Prof. Yuh-Lin Wang. An introduction of each component mini-course is listed below:

	Part 4 (2 Weeks)
Speaker	Prof. Jim J. Lin
	林志民教授
	Part 1 (2 Weeks)
	Prof. Ker-Jar Song
	宋克嘉教授
	Part 4(Lin): Vacuum concepts; vacuum generation, measurement, and
Class Outline	diagnosis.
Class Outline	Part 1 (Song):
	Part 4 (Lin):
	Gas mean free path, gas flow, outgas, differential pumping, sealing,
	pumps, pressure measurements, leaks, etc. Practical way to achieve
	good vacuum.
	Part 1 (Song):
	1. Do and don't, stories and lessons learned from years of ultra-high
Introduction	vacuum practice.
	2. Experimenting with a real ultrahigh vacuum system for one
	week. A residual gas analyzer is available so that students get to
	know what happens in the chamber for each step of his operation.
	Students will practice venting the system, replacing components,
	pumping it down, leak/dirt testing, baking, e-beam bombardment,
	and all kind of tricks that can help bring good vacuum the fastest
	way.
	Part 4 (Lin): Exam and Homework.
Grading	
Grading	Part 1 (Song): 40% from written examination on general principles of
	vacuum technology, 60% from how good a vacuum one can obtain.
	1. Building Scientific Apparatus, 2 nd edition or 3 rd edition by Moore,
Textbook	Davis and Coplan
	2. Operating manuals of components of the UHV system.

	Part 3 (4 Weeks)	
Speaker	Prof. Juen-Kai Wang	
	王俊凱教授	
	Optics, Lasers, and Optical Signal Detection	
	1. ABC of optical components: optics, opto-mechanics, vibration	
	isolation and motion control	
	2. Know your laser system: basic principles, laser engineering,	
Class Outline	frequency conversion and laser safety	
	3. Detect optical radiation: intensity, wavelength, polarization and	
	phase	
	4. Build an optical instrument: initial concept, computer	
	drawing/simulation, revision and construction	
	This course is to provide basic knowledge to use optical and laser	
	instruments in laser laboratories and eventually to have a basic	
Introduction	training about how to construct an optical setup for a specific	
Introduction	experiment. Furthermore, the course provides a hand-on	
	experimental experience to learn how to manipulate optical	
	components.	
Grading	1. A construction plan for an optical setup: (60%)	
	2. A hand-on experiment: on-site test (20%) and report (20%)	
Textbook	1. Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich (John	
	Wiley & Sons, New York 1991).	
	2. Laser Spectroscopy: Basic concepts and instrumentation, W.	
	Demtröder (Springer-Verlag, Berlin, 1996)	

Speaker	Part 2 (5 Weeks)	
	Prof. Jyhpyng Wang	
	汪治平教授	
	(3) Laboratory Electronics	
Class Outline	List of subjects:	
	Part 1: circuit construction: circuit elements and diagrams,	
	construction and diagnosis tools, soldering and assembling, shielding	
	and grounding, circuit protection	
	Part 2: basic electronics: diodes and transistors, impedance and	
	passive filters, amplifiers, active filters and oscillators,	
	negative-feedback control, digital circuits, digital/analog interface	

In a modern laboratory, data are transmitted by electronic signals. Machines are also controlled by electronic signals. Therefore it is extremely important for students to know what is going on behind the switches, knobs, cables, detectors, etc. In this course we will teach students the basics of real-world electronics. In part 1, we begin with an extensive introduction to common electronic components and tools. and then we teach some important techniques of circuit construction. In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ. Press.			
Introduction Introduction Introduction Introduction In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		In a modern laboratory, data are transmitted by electronic signals.	
switches, knobs, cables, detectors, etc. In this course we will teach students the basics of real-world electronics. In part 1, we begin with an extensive introduction to common electronic components and tools, and then we teach some important techniques of circuit construction. In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook		Machines are also controlled by electronic signals. Therefore it is	
Introduction Introduction In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook Textbook		extremely important for students to know what is going on behind the	
Introduction In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) Textbook Textbook Textbook Textbook		switches, knobs, cables, detectors, etc. In this course we will teach	
Introduction In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		students the basics of real-world electronics. In part 1, we begin with	
In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		an extensive introduction to common electronic components and tools,	
In part 2, we shall discuss common building blocks of electronic circuits. Starting from the most basic diodes and transistors, we show the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.	Introduction	and then we teach some important techniques of circuit construction.	
the construction of filters, amplifiers, and oscillators. Then we move to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.	introduction	In part 2, we shall discuss common building blocks of electronic	
to feedback control, and finally to digital circuits and digital/analog interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		circuits. Starting from the most basic diodes and transistors, we show	
interface. These building blocks are so often used in laboratory electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		the construction of filters, amplifiers, and oscillators. Then we move	
electronics that by knowing them well, students can build up the confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook Textbook		to feedback control, and finally to digital circuits and digital/analog	
confidence in handling laboratory electronics. 1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		interface. These building blocks are so often used in laboratory	
1. Constructing a working electronic device, such as an electronic clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		electronics that by knowing them well, students can build up the	
clock, a stepping motor system, a function generator, a regulated power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		confidence in handling laboratory electronics.	
Grading power supply, an audio amplifier, an electronic door-bell, a telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) Written examination. (50%) Textbook Textbook Textbook		1. Constructing a working electronic device, such as an electronic	
Grading telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook Textbook Textbook		clock, a stepping motor system, a function generator, a regulated	
automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook Textbook Textbook		power supply, an audio amplifier, an electronic door-bell, a	
circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%) Textbook Textbook Textbook	Grading	telephone answering machine, an effect box for electric guitars, an	
2. Written examination. (50%) Textbook Textbook Textbook		automatic egg boiler, an echo circuit for karaoke, an infrared alarm	
Textbook The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.		circuit, a flood alarm circuit, etc. (50%)	
l Textbook I		2. Written examination. (50%)	
Press.	Textbook	The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ.	
		Press.	

	Part 5 (2 Weeks) Prof. Ta-Chau Chang 張大釗教授
Class Outline	
Introduction	
Grading	

Textbook	

	Part 6(1 Week) Prof. Yu-Ju Chen 陳玉如教授
Class Outline	質譜技術 Mass Spectrometry

Speaker	Part 7 (1 Week) Prof. Der-Lii Mike Tzou 鄒德里教授
Class Outline	核磁共振技術 NMR Technology
Introduction	 NMR basics and fundamental principles NMR phenomena, relaxation behavior, spin-spin interaction and NOE 1D and 2D NMR experiments (1H, 13C, 15N, 31P) & 2D (COSY, NOESY, HSQC, HMBC) A brief about multi-dimensional NMR for Macromolecules. Experimental sections
Grading	75% in quiz and 25% in experimental sections
Textbook	 Ivano Bertini, Claudio Luchinat and Giacomo Parigi, "Solution nmr of paramagnetic molecules" 2001. Kenssal E. van Holde, W. Curtis Johnson and P. Shing Ho, "Principles of Physical Biochemistry" (2nd edition 2006) pp535-578